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Figure 1: The Typical Forward Problem: Analysis 

 

 

Analysis Technique – closed 

form, finite elements, etc  

Device Description: 

dimensions, currents, 

material etc. 

Device Performance: 

force, inductance, 

electric stress, etc. 

Finite Elements, Design Optimization, and Nondestructive Evaluation: A Review in Magnetics, and 

Future Directions in GPU-based, Element-by-Element Coupled Optimization and NDE 

 

S. Ratnajeevan H. Hoole1,  Victor U. Karthik1, Sivamayam Sivasuthan1, Arunasalam Rahunanthan2, 

Ravi S. Thyagarajan
3
 and Paramsothy Jayakumar

3 

 

1. Dept. of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA. 

2. Department of Mathematics and Statistics, University of Toledo, Toledo, OH 43606-3390, USA. 

3. The US Army Tank Automotive Research, Development and Engineering Center, Warren, MI 48397-5000, USA. 

 

Email addresses in order:  srhhoole@gmail.com, uthayaku@msu.edu, sivasuth@msu.edu, 

rahunanthana@gmail.com, ravi.s.thyagarajan.civ@mail.mil, paramsothy.jayakumar.civ@mail.mil  

  

Abstract: 

Most important journal papers in magnetics are selected from conference records with quick review 

and subject to stringent page limits. The literature as a result is unsatisfactory, inadequately 

attributing previous works and without sufficient details to replicate work presented. This paper 

therefore reviews mathematical optimization in synthesis and nondestructive evaluation (NDE) by 

the finite element method in magnetics. The review identifies the earliest papers. Thereafter this 

paper proposes and establishes the feasibility of coupled problem optimization using the genetic 

algorithm to avoid mesh induced minima which hurt gradient based methods. The genetic algorithm, 

while avoiding the need for derivatives, results in having to undertake even more numerous finite 

element solutions.  Although the genetic algorithm has been applied in optimization, in coupled 

systems the number of object function evaluations doubles. We there examine the use of graphics 

processing units (GPUs) to handle the immense computational load. GPUs have recently been 

introduced in finite element analysis but their memory limits are often not recognized and are 

critically limiting when parallelizing the several solutions required in optimization. To overcome this 

limit, element-by-element finite element matrix processing is employed, making coupled problems 

practicable on GPUs. We overcome the memory limits faced by others.  

 

1. Inverse Problems for Design 

– A Review 

The direct problem with which 

the finite element method 

started [1-3] has a device 

governed by a particular differential equation, say the Poisson equation 

																																																																																�ϵ��� � � (1) 

 as was solved by the finite element method  by Zienkiewicz and Cheung in their classic paper [3]. 

Once we have � – which may be electric potential, pressure, magnetic vector pressure etc. 

depending on the system – we may compute performance descriptions like inductance, force, etc. 

(Fig. 1). That is, from the system description, we compute performance. This is analysis. 

 

The inverse problem – the more practically realistic problem, which is synthesis – goes from the right 

hand side of Fig. 1 to its left. That is, wanting a performance, computing the system description from 

it. Thus the computational design assignment may be this: compute the size and other descriptions 
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Figure 2: Pole-Faces to be Shaped 

 

 

 
Figure 3: Minimal Problem using Symmetry 

of a motor that can produce so much torque. In industry this was done by the cycle of design-make-

test-redesign. This required an expert to redesign and took long. In time by the 1970s instead of 

making and testing, we analyzed, solving the direct problem by the finite element method. 

  

 

 

 

 

 

 

It was left to engineers dealing with stress 

analysis and fluids to couple optimization 

with the finite element method [5-7], and the 

second half of the 1970s and 1980s would be 

the time for true synthesis – solving for 

geometric shape and material values from 

design criteria.  The earliest persons to 

automate this cycle in magnetics were Marrocco and Pironneau in 1978 [6]. They attempted to 

optimize the shape of the magnetic pole of a recording head so that the fringing effect at the edges 

of a pole could be countered so as to realize the object of constant flux density B in a the recording 

head. (Fig. 2 gives a similar problem with a repeating alternating pole system from electric 

machinery where a constant flux density is required on top of each pole to facilitate alternating 

waveform generation. The minimal boundary value problem for analysis is shown in Fig. 3). 

 

Marrocco and Pironneau [6] located their work in the latter’s 1976 doctoral thesis at Université 

Pierre-et-Marie-Curie (also known as UPMC and Paris VI), optimizing structural and fluid systems. 

That is, their work may be seen as parallel to the 1976 work of Arora and Hang [7] who established 

finite element optimization in a journal. They approached this problem by defining an object 

function F consisting of the square of the difference between the computed and desired flux 

densities. Thus the problem is one of optimizing – i.e., minimizing –  F which is a function of 

parameters �	, ��, ⋯	defining the geometry and which are computed so as to minimize F. 

 

 

 

 

 

 

 

 

Figure 4: Jagged Pole Face of Right Half of Recording Head 

 

Their results are shown in Fig. 4. The nonsmooth jagged contour in Fig. 4b that they realized is 

practically not a manufacturable shape. This they addressed by smoothening the pole face as in Fig. 

4c. However, Marrocco and Pironneau, aware of the problem of jagged contours, have further 

addressed it to permit smoothening by allowing nodes to move only along prescribed paths. 
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Figure 5: Slow Rise in Solution Time by 

Cholesky’s LU Method as Parameters go up 

Although the comprehensive 1984 book by Pironneau on optimization [8] deals with the theory of 

imposing constraints and applies them to many systems, the results presented from magnetics are 

the same as presented by Marrocco and Pironneau much earlier without constraints. Pironneau, a 

widely experienced pioneer scientist in optimization and finite element analysis, particularly in fluids,  

was not focused on magnetics. He with Marrocco solved this problem to demonstrate the broad 

applicability of their methods of finite element optimization and then moved on. The line of work 

broached by Pironneau would remain untapped for a while until another French group would pick it 

up using computational optimization just coming to the fore then [9]. 

 

In magnetics the Ecole Nationale Supérieure d'Ingénieurs Electriciens de Grenoble (ENSIEG) group 

led by J.C. Sabonnadiere, J.L. Coulomb and G. Meunier would bring mathematical optimization to 

bear on finite element analysis design in 1989 [9]. The ENSIEG group, however, ignored the 1978 

magnetics paper by Marrocco and Pironneau [6] and sought inspiration from the seminal 1976 

structural optimization paper by Arora and Hang [7]. 

 

This early work flowing from the ENSIEG group used gradients based methods, steepest descent in 

particular [5]. Here the change in parameters of device description {p} is against the gradient of the 

object function F because in one-dimensional analogy the minimum point is to the right of locations 

with negative gradient and to the left of those with positive gradient: 

																																																																												�� � �� � � ��
��� (2) 

where the amount of change � is determined by a line search [5].  The computation of the gradient 

��	��. �. , �� ���⁄ � was previously by finite difference, computing F through a finite element 

solution corresponding to a given {p} and then in turn changing each component �� by an 

infinitesimal amount and re-computing F to get  �� ���⁄ � �� ���⁄ . Thus the component of �� at 

each iterative step with n components of {p} took n+1 finite element solutions and then once the 

direction of change of {p},���, is established several more finite element solutions were need to be 

sought during the line search as � in (2) is progressively increased and the problem iteratively solved 

until the minimum of F in that direction is identified [5].  Each changed {p} means a new geometry 

and therefore a new mesh. For a seamless iterative 

process, automatic mesh generators are required 

that can yield a mesh corresponding to a given {p}. 

 

The finite difference computation of the gradient of 

F had been known to be notoriously inaccurate from 

force computations by the virtual work principle 

[10]. However Coulomb [11-13] of the ENSIEG group 

identified a one-step solution for the computation of 

��from the finite element solution without resort to 

a second solution for determining the change in F 

with change in each component of {p}. This 

discovery occurred while working with the virtual work principle for force computation in magnetics 

where the force F in the direction s is computed by differentiating the stored magnetostatic energy 

�� :	� � ���� � .⁄ 	 The finite element approximation of the Poisson equation (1) leads to the 

matrix equation 
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Figure 6: Jagged 

Optimized Shapes  

																																																																										!"#�� � �$ (3) 

where the Dirichlet matrix [P] is usually evaluated numerically from element coordinates [14, 15]. 

Prior to numerical evaluation however, [P] is an explicit function of the nodal coordinates and 

therefore differentiable explicitly. That is, �!"# � ⁄  for force computation or �!"# ���⁄ 	in designing 

parameters ��	may be numerically evaluated after differentiating the explicit form of [P] as a 

symbolic expression in terms of element coordinates after mapping nodal coordinates to s or ��	 as 

appropriate [15, 16]. ��� ���⁄  may thereupon be computed from, upon differentiating (3): 

																																																										!"# %�&
%�'

� %�(
%�'

� %!)#
%�'

�� (4) 

Although the Incomplete Cholesky Conjugate Gradients (ICCG) method is usually the preferred 

method of solving matrix equations with sparse symmetric positive definite coefficient matrices as 

from the finite element method, in this particular case it is far more efficient to use the Cholesky 

factorization method as seen in Fig. 5 [14, 17].  In Cholesky’s method most of the work is in 

decomposing [P] into its lower and upper triangular Cholesky factors [L] and [U] after which all that 

is left to do is the quick forward elimination and back-substitution. In this instance, since equation 

(3) for �� and the many equations (4) for ��� ���⁄  share the same coefficient matrix [P], once the 

Cholesky factors are computed in solving (3) for ��, they may be used to solve (4) for ��� ���⁄  

with trivial extra work [17]. That is why in Fig. 5 as the number of p’s goes up, the solution time for 

Cholesky’s scheme remains practically flat, taking up time only for the 

forward elimination and back-substitution. 

 

This seminal ENSIEG work on force computation through 

differentiation [11-13] led by 1989 to the next logical step of applying 

derivative information for gradients based optimization [9, 18]. 

Although the Grenoble group too worked with constraints, perhaps 

to ensure basic requirements like lengths not going negative, they did 

not apply constraints to ensure the smoothness of shapes. For 

example, Fig. 6 from [9] presents a pole shape they synthesized for a 

linear change in the horizontal direction of the vertical flux density, 

where the jagged contour is evident. 

 

2. Other Early Papers on Optimization in Magnetics 

This seminal Grenoble paper in 1989 [9] following Marrocco and Pironneau’s original work [6], both 

from France, opened up the subject of optimization in magnetics. This new subject innovation had 

two aspects: one –  the key – the idea of the inverse problem posed through the minimization of an 

object function, and, two, the method of optimization to find the minimum of that object function. 

 

Each magnetics paper that followed, for the most part added a new aspect in terms of method of 

optimization while failing to acknowledge the preceding foundational work on posing the inverse 

problem through object functions. Unfortunately the IEEE Transactions on Magnetics, Journal of 

Applied Physics and a few others with their policy of quick turn-around through selecting most of 

their papers from conferences, had a flurry of papers that did not reference these seminal works by 

Marroco and Pironneau [6] or the ENSIEG group [9]. Because of the route and methods of paper 

selection described in detail in section 4, these indexed-journal papers often applied a new method 

of mathematical optimization and effectively purported to bring inverse problem solution into 
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magnetics; whereas they were really bringing into magnetics new ways of minimizing the object 

function introduced to magnetics by Marroco and Pironneau, and ENSIEG. The page limit with 

conference issues of journals did not permit space for replicability so that these papers failed to 

allow others to repeat their work easily and build upon it; the journals were focused on results 

rather than method because of such stringent page limits. 

 

The next two papers on finite element optimization in magnetics after the ENSIEG paper came early 

in 1990, from Germany, both selected conference papers carried in the same issue of the IEEE 

Transactions on Magnetics [19, 20]. Russenschuck’s newness [19] was in the methods of 

optimization, for example on the Rosenbrock and SUMT optimization algorithms for searching for 

the object function’s minimum by gradient methods [5].  No new information was offered on how 

the gradient �� of the object function was calculated. Seminal sources on gradient computation 

were not referenced. Neither did they acknowledge the French works. Nor did Schafer-Jotter and 

Muller [20] who gave more details and introduced the zeroth order, statistical-based simulated 

annealing method to magnetics; however they do not seem to have recognized the advantages of 

not having to compute gradients.  

 

Likewise, a few months later in 1990, an Austrian group, also ignoring the French work, did not 

mention the problem of jagged shapes but avoided the problem by modeling shapes by fourth, sixth 

and eighth order polynomials and optimizing for the polynomial coefficients [21]. However, it was 

puzzling because it is well known that high order polynomials in modeling the curve of Reluctivity	* 

Versus +� for steels yield undulating (squiggly) shapes and this problem is avoided by, just as in finite 

element shape functions, several short shapes of low order (cubics at most) with the values and 

slopes matched at the boundaries [22].  Presumably the results they presented are for third order 

polynomials because they lack the undulations to be expected. For when we tried high order models 

we did get highly undulating shape profiles. However, that paper usefully introduced to magnetics 

the evolution strategy (a variant of the genetic algorithm brought into magnetics by a Korean group 

under Hahn to optimize a coil gun [23]. The solution there was not by finite elements but by circuit 

models). 

 

A Japanese group under Nakata [24], also as early as 1991 and not referencing the French works but 

the later work of Schafer-Jotter and Muller [20], optimized a magnetic circuit by minimizing a least-

square object function by Rosenbrock’s search method [5]. An early Italian paper from Jan. 1992 [25] 

had very powerful results in 3-D but offered little information in terms of method or the  object 

function except to say they used pattern search with constraints. If they had given more details it 

would have been seminal for having branched into optimization in 3-D magnetics. 

 

A British group [26] brought in simulated annealing without mentioning the seminal French work nor 

the work with simulated annealing of Schafer-Jotter and Muller [20]. Their geometric changes 

involved no continuous change of shape but square bits that were switched on and off as finite 

element optimization in magnetics proceeded to grow as a field. A Korean group did not mention 

constraints but came up with results of smooth shapes using the steepest descent method [27]. 

Other papers introduced parallel computation on shared memory systems for finite element 

optimization [15, 17, 28]. 
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Figure 7: Unwitting use of Elastic Mesh by 

Marrocco and Pirnonneau [6] 

3. Constraints, Specialized Meshes 

Although several papers had been presented on gradients based optimization, none had mentioned 

the problem of jagged contours and that of artificial mesh-induced local minima that are not intrinsic 

to the physical problem. As noted, the jagged contour results were smoothened by Marrocco and 

Pironneau [6, 8] and the ENSIEG group paid no attention to the jagged contours of Fig. 6. Others had 

used polynomial fits of surfaces thereby avoiding the problem [21].  

 

No one among the authors of the preceding 

papers at the time had recognized the 

problem of mesh induced local minima in 

object functions. As a geometry changes 

and an element violates the Delaunay 

criterion for meshes [14], the nodal 

connections are changed by the mesh 

generator thereby making the evaluated 

object function undergo a C
1
 discontinuity. The local minima encountered by researchers (according 

to numerous personal communications at the time such as with the authors of [25]) were thought to 

be systemic (i.e., inherent to the problem being solved) and bypassed by restarting the iterations 

from another point.  

 

Recognizing this problem Subramaniam et al. [29] suggest a tunneling function and an assortment of 

algorithms so that when one fails another may be started to identify the minimum. However, the 

real cause of the local minima in the object functions, would soon be identified as owing to changes 

in nodal connections as the shape evolved under synthesis [30, 31]. Two solutions were offered: 

either keep the nodal connections fixed so that as geometric changes occur the meshes are 

elastically pulled or crunched, or, alternatively, use a zeroth order search method so that the local 

mesh-induced minima are not a problem. In light of this knowledge, when Marrocco and Pironneau’s 

paper [6] was examined, it turned out that they had, working in an era where there were no 

automatic mesh generators, used an elastically distorted mesh with the connections not changing as 

shown in Fig. 7.  This had given them smooth object functions without their recognition that the 

specific mesh changes they used had made them avoid the attendant problem of mesh-induced local 

minima. A special mesh generator elastically to deform the mesh while keeping nodal connections 

fixed was created by Krishnakumar for his doctoral thesis [32]. 

 

To address jagged contours a few successful approaches have been proposed and employed. 

Explaining using the pole face described by n parameter heights �	, ��, … , �- as shown in Fig. 8, the 

object function is defined by 

																																																																����� � 	
�∑ /+�

0 � 12�3
�4	  (5) 

where +�
0

 is the vertical component of flux density at the measuring points i which are also shown in 

Fig. 6. +�
0

at the 9 measuring points would be forced to the value 1 T when F goes down to its lowest 

value 0. Those were times – the 1980s – when shape optimization was just taking off. The 

mathematical optimization formulation used by Pironneau in his book was complete. He 

implemented 

																																																																								5�6�7�8�	� � ���� (6a) 
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Figure 9: Smoothening Shape by Constraints 

 
Figure 10: Elastic Mesh from Deformation under Pin-Point Load 

subject to the equality constraints 

																																																																		9����� � 0			� � 1, 2, …< (6b) 

and inequality constraints 

																																																																			=����� > 0		� � 1,2, … ? (6c) 

Inequality constraints of the type @��� A 0 may be recast as in (6c):  =����� � �@����� > 0. Those 

of the form B > @��� > C as =� � �@� � B��@� � C� > 0. This form with upper and lower limits is 

often normalized as =� � �@� � B��@� � C�/�C � B� > 0).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Parameterized Pole Face Description Vector {p} 

 

As already mentioned Marrocco and Pironneau [6] did not use constraints in magnetics in 1978 or 

1984 to enforce the smoothness of the pole-face.  Nor did the ENSIEG group [9]. With constraints it 

has been shown that jagged contours result as in Fig. 4b and Fig. 9a. But with constraints forcing the 

straight line segments from point i-1 to point i to be within say a certain angle of the slope from 

point i  to point i+1, 

																																																																			E�'FGH�'
I'FGHI'

� �'H�'JG
I'HI'JG

E > K (7) 

shaped surfaces would be of the form seen in Fig. 9b [33]. The result can be relatively smooth but 

undulating and could be 

objectionable to those called to 

manufacture a recording head like 

this, although it meets the design 

object perfectly. Using the multiple 

solutions there exist for this 

problem, another approach regards 

pn p1 

p2 

Coil 

Bac

k-

Pole Piece 

Pole Face 

being Shaped 

Measuring Points for By 
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Figure 11: Structurally Deformed Alternator Optimization 

the recording head artificially as 

made up of a rubber like substance 

so that if pressed down by a pin-

point force it would deform 

smoothly as in Figs. 9d and 10 [31]. 

Thus the question is recast as “What 

is the set of pin-point forces ��� 

which when applied to the surface, 

deform it to a form that would yield 

a uniform flux density – i.e, minimize 

the object function F. The artificially 

assigned mechanical properties of 

the material ensure a smooth profile of the shaped geometry as shown in Fig. 11. Thus it is a two 

part problem whose importance is in laying the mathematical groundwork for coupled field 

problems [34].  A structural problem solves for {p} from pin-point forces ���� 
																																																																				!L#�� � ���� (8) 

and the magnetics problem gives the magnetic vector potential �M sourced by current density J: 

																																																																					!"#�M � �@ (9) 

Since optimization requires gradients with respect to the parameters of design, in this case the pin-

point forces, we need  

																																																																 %�
%�NN

� ��
��NN

O ��
��P

%�P
%�NN

 (10) 

�� ����⁄ 	accounts for explicit appearances of ���	in F and is nearly always zero.  �� �M⁄  is easily 

obtained because the object function is defined in terms of the flux density B and the curl of A is B. 

We now compute Q�M Q���⁄ , where {A} and  ���	are in the electrical and structural systems, from 

																																																																						%�P%�NN
� %�P

%��
%��
%�NN

 (11) 

The two derivatives on the right hand side are obtained by differentiating and solving the equations 

(8) and (9) for the derivatives. Alternatively we can work without forces but some part of {p} 

replaced by forced displacements. Fig. 11 from Weeber’s doctoral work [31, 35] shows the designed 

alternator to yield a sinusoidal stator flux distribution. 

 

A third option is to work with constraints on the heights ��numbered from the left to right of the 

form 

																																																															�	 A �� A �R A ⋯�- (12) 

This will yield a solution as in Fig. 9d, again giving an object function going down to 0 because of the 

multiplicity of solutions possible. 

 

Because this problem of shaping a pole to yield a constant flux density has numerous solutions it has 

now come to be a standard benchmark problem for testing software purporting to optimize 

geometries [36]. 

 

Weeber and Hoole [37], recognizing that much of the work in magnetics is reinventing the wheel 

already invented under structural analysis and that there was a wealth of information already in that 

literature unknown to the magnetics community in electrical engineering, brought several methods 
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from structural and civil engineering into electromagnetics. Thus the important subregion method 

was brought into magnetics and the part where the shape is being optimized made a subregion so 

that computations were greatly simplified [38].  

 

4. Quality of Magnetics Papers and Special Via-Conference Journal Issues 

Papers on numerical methods are difficult to evaluate. Unlike with old explicit solutions where to 

accept an argument one simply follows the authors’ derivations, with numerical methods a reviewer 

for proper assessment needs to program the method again repeating work which might have been 

done over a doctoral thesis. This cannot practicably be done.   

 

Recognizing this, thanks to several conferences on magnetics having arrangements for selected 

papers to be quickly carried by journals, many important results have seen the light of day instead of 

having to languish for long periods for review. But as a result, as we have seen in the previous review 

of papers in this important area of magnetics, past work was not properly attributed and results 

needing a lot more development were published without providing sufficient detail to replicate 

them. 

 

By far the vast majority of papers in computational electromagnetics appear in the IEEE Transactions 

on Magnetics and the Journal of Applied Physics via the IEEE Conference on Electromagnetic Field 

Computation (for which the first author was once in charge in various capacities), and the 

COMPUMAG, Intermag, and Magnetism and Magnetic Materials Conferences.  Regular papers with 

leisurely review and no page limits are comparatively few in these journals. However, respectability 

of results has become an issue as a result. The papers being author-prepared for quick turnaround, 

poorly typed papers in bad grammar are not unknown. In the days of ribbon printers such little 

attention was given by the IEEE to printing quality in the rush to meet deadlines, that some papers 

given in readable quality for printing in indexed transactions were totally unreadable because of 

photo-reproducing without proper exposure [39]. 

 

As a conference is planned, a publication date is set and a maximum of 2 months is given for review 

for quick turnaround of a few hundred papers. As a result, whereas with regular journals a paper is 

carefully matched to reviewers and when reviewers say they are not competent new reviewers are 

found; on this accelerated route, reviewers are set well before a paper is submitted and the tight 

schedule does not allow reviewers to be easily changed (although that is occasionally done). A great 

disservice appears to have been done to engineering science by this rush. Thus for an issue of one 

IEEE Transactions on Magnetics the first author was asked to review 3 papers over the 4-day 

duration of the conference in Tokyo without access to his library or facilities for internet searches. 

Whatever he read was in between sessions and dinners with friends after the day’s proceedings. 

While that may be an extreme example, reviews are generally inadequate. For example even when 

two weeks were given for review at the reviewer’s usual office, when the first author of this paper 

was the Guest Editor for selecting papers from such a conference, a paper presenting methodology 

and equations based on the finite element method had meshes and results from the boundary 

element method. In the hurry the 2 reviewers had accepted the paper! (It was, of course, rejected). 

 

If a reviewer asks for a major change, even a good paper is effectively rejected for lack of time. So 

reviewers are reluctant to ask for major changes. If a section needs elaboration for repeatability of 
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results, reviewers are again reluctant to ask for that because what can be said in the 3 or 4 pages 

allowed the author? This is how in magnetics a lot of partial work and papers without attribution to 

previous works have made it into indexed journals. In the worst oddity, a paper rejected for the 

Journal of Applied Physics from the MMM Conference, still appears as a one-page summary in the 

journal (because it was presented), giving indexed journal respectability to a rejected paper. An 

example is cited as reference [40]. 

 

Getting a paper is thus a matter of funds for travel and registration plus the multiple-paper 

surcharges at conferences, and then playing the lottery where the more papers one throws into the 

conference, the better the chance of something getting accepted. Typically it costs $3000 to get a 

paper by this route (for conference registration, hotel and subsistence, and travel). As a result unlike 

in the old days these journals give better access to those who can pay, while the quality of papers 

suffers. The professional societies standing behind these prestigious conferences make a lot of 

money.  

 

When these issues were raised with the IEEE, the response was that poor authors may submit to the 

regular issues. But the continued free access to regular papers is poor compensation given the 2-plus 

years that regular papers can take and the higher quality that regular papers need for acceptance.  

These journals have argued that there is no loss of quality because the rate of acceptance for regular 

and via-conference papers is similar. That is a fallacious argument because authors are very careful 

about what they submit to a regular journal but going the conference route they sometimes submit 

several papers knowing the acceptance rate will guarantee a proportion to be accepted. It is like 

comparing the products of 1) a university that carefully admits 100 students and graduates 90% and 

2) another university admitting 10,000 students and graduating 90%. The products cannot be of the 

same quality even though both have a 90% retention rate. 

 

A new dimension of the problem as journals attempt reform (recognizing the problems without 

admitting to them) is from their imposing a limit on the number of pages of each special conference 

issue. Previously there could be any number of pages so long as the conference paid for them. Now, 

in a context where nearly all reviewers are attendees at the conference, if a reviewer accepts a 

paper, it could be a vote against his or her own paper! 

 

Until these problems are addressed papers in magnetics will continue to suffer in quality. 

 

5. Prospects for Further Extensions 

5.1 Extensions 

In magnetics a lot of important work has been done in device shape optimization since 1978. The 

purpose of this section is to establish future directions for harnessing the power of these methods. 

 

5.2 Applications to NDE: Assessment of Severity of Interior Defects 

Hoole, working with the ENSIEG group on a Summer assignment just after their seminal work in 

1989, would use the fact that the ENSIEG methods could be equally applied to non-destructive 

evaluation (NDE) [16]. That is, where design synthesis computed the design vector {p} to match 

electromagnetic fields corresponding to design goals (which are the performance specifications), in 

NDE the interior defect is described by the design vector {p} and the performance is the externally 
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Figure 12: Problem-Specific Parametric Mesh Generator 
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Shape) 

measured fields.  That is we find the defect that would match exterior measurements through a 

least-square object function expressing the difference between the measurements and the fields 

computed in the presence of the defect.  Thereby the shape and location of the defect are identified.  

 

These methods have since been carried into applications such as testing for cracks in oil pipelines, 

underground petrol storage tanks, nuclear reactors, etc. [41-44]. An external current coil is taken 

over the structure subject to testing (Fig. 12). Knowing the response field when the structure is 

defect free, a change in measured field is used to flag a defect.  

 

However, when there is an 

inaccessible defect, it is important to 

know the severity of the problem.  For 

army ground vehicles hulls with minor 

rusting setting in, the current testing 

methods would flag a defect and the 

vehicle withdrawn from deployment. 

But so withdrawing it without proper 

assessment of the defect may be an 

unwarranted waste.  That is, the 

nature of the defect has to be 

assessed to avoid wasteful withdrawal 

from service. Having the response waveform from 

measurement, we postulate a defect defined by 

dimensional parameters �� as in Fig. 12 Not knowing the 

actual shape, the more parameters we have the better for 

accurate assessment of defect.  

 

To establish feasibility for this method, we need a special 

mesh generator modeling the crack defined by parametric 

location and shape. We created such a mesh generator for 

establishing feasibility as shown in Figs. 12 and 13b, 

created a crack and computed the fields along measuring 

points outside the steel plate. As the dimensions {p} of Fig. 

12 change during optimization, the mesh is crunched and 

pulled  from the starting mesh of Fig. 13a to the final 

design of Fig. 13b. This mesh is therefore suitable for 

testing gradient methods as well as zeroth order methods.  

But it needs further generalization to model all manner of 

defects. 

 

Taking the results as the “measured field,” we had to 

“discover” the shape and location of this crack as 

described by parameters {p}.   The shape was identified by 

the genetic algorithm as well as simulated annealing (with 

the former working better as discussed below). The final 
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Figure 14: Crack Recreated from Exterior Fields using 

10 parameters 

defect is seen in Fig 13b. and the 

magnetic fields in Fig. 14. Ultimately this 

problem would need to be done in 3-D 

where the computational load would be 

high because each component of the 3-

component magnetic vector potential 

would be complex [14].  

 

Our experience is that gradient 

techniques are fast in computation but 

slow to set up because of the 

programming time to have special mesh 

generators.  Going by the literature Preis 

et al. [45], staunch advocates of the 

zeroth order evolution strategy, merely 

say it is competitive with its higher order deterministic counterparts (which we take to mean the 

same in time at best), but claim its “robustness and generality” are superior. This we agree with 

because search methods will never see mesh-induced artificial local minima as a problem. In 

contrast to what they say, Simkin and Trowbridge [26] aver that simulated annealing and the 

evolution strategy take many more function evolutions. This is also our experience and we would 

add that the genetic algorithm works faster than simulated annealing.  Haupt [46] advises that the 

genetic algorithm is best for many discrete parameters and the gradient methods for where there 

are but a few continuous parameters. We have gone up to 30 continuous parameters using gradient 

methods without problems. There seemed good reasons to go either way. 

 

For now therefore in this feasibility study, a zeroth order method like the genetic algorithm or 

simulated annealing would be best. We therefore decided to test both methods, simulated 

annealing and genetic algorithm, both zeroth order methods where no derivative calculations are 

required.  The least square object function F was defined as the square of the difference between 

the exterior fields we need to get and those computed from the postulated crack. The fitness 

function S � 1 �1 O ��⁄  converged to almost 1. The genetic algorithm worked faster than simulated 

annealing as seen from Tables 1 and 2. For the genetic algorithm, a comparable object function is 

computed from � � �1 � S� S⁄ . It is seen that the genetic algorithm reaches a comparable object 

function value much faster than simulated annealing. 

 

Table 1: Performance of Genetic Algorithm 

Population 

Size 

Error (%) f Fitness 

Function  

F, Object 

Function 

Time (s) 

10 6.7 0.94x10
-4 

1067.0 2.00 

20 5.46 0.0018 554.55 3.88 

50 2.09 0.9974 0.002 9.65 

 

 

 

 

Table 2: Performance of Simulated 

Annealing 

Iterations 
F, Object 

Function  
Time (s) 

500 0.0448 14.25 

1000 0.0146 28.22 

4000 0.0282 119.12 

40000 0.0075 1144.42 
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Figure 15: Procedure for Coupled Electrothermal 

Optimization 

 
Figure 16: The Boundary Value Problem 

5.3 Coupled Problem Shape Optimization 

Coupled field problems are where one field 

system with the shapes to be optimized 

influences another field system in which the 

objects of design are defined. A good 

example is electro-heating [47]. The electrical 

system provides the joule system that has to 

be shaped so as to produce a particular heat 

distribution. Two example industry 

applications are metal forming where molten 

metal is heated through heavy currents to 

produce the forces to make the molten metal subject to the extrusion or turning forces we want [48, 

49]. The application of the ENSIEG force computation methods to this problem is obvious. A second 

example is hyperthermia treatment for oncology where exterior electrodes attempt to burn interior 

cancerous tissue [50]. 

 

The procedure for coupled problem optimization is summarized in Fig. 15. As noted we have already 

solved this by gradient techniques and chain 

rule differentiation [34] using the same 

procedure as used for deforming the finite 

element mesh under pin point forces [31, 35]. 

 

In comparing methods of optimization generally 

by far the gradient based methods are the 

fastest as already noted. However as also noted 

they are difficult to program and to set up 

because of the requirements on elastic meshes 

to avoid mesh-induced local minima which are 

fatal to gradient optimization. But we have 

successfully optimized the shape of a conductor 

so that just above it along a straight line the 

temperature is constant – corresponding to the 

coupled boundary values problem of Fig. 16 

showing a quarter of the system where the current in the conductor, subject to eddy effects [14], 

heats it thereby producing a temperature profile around it. We wish to have a constant temperature 

along the line of measuring points shown above the conductor. The object function then is the sum 

of the squares of the difference between computed temperature T({p}) and the desired constant 

temperature at the measuring points. To this end of optimizing the shape we have already 

computed the gradients using chain-rule differentiation using special mesh generators that avoid 

mesh-induced minima [30, 33]. In our experience, for coupled problems gradient based methods are 

all the more difficult because the meshes for the two field systems are often different and the 

programming very problem specific and tough. Another method is therefore required without any 

requirement for gradients – that is the genetic algorithm which has been found to be satisfactory 

except for needing numerous matrix solutions. In coupled problems this computational load, 

however, will be twice as much. 
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Table 3:  Hitting the 4 GB Limit at Matrix 

Size 10
4
x10

4
  

Size Storage (in MB) 

 Normal Profile Sparse 

100 0.04005 0.00443 0.00652 

400 0.06866 0.04127 0.01686 

900 3.10707 0.12714 0.03632 

1600 9.79614 0.28701 0.07027 

2500 23.88954 0.54378 0.11368 

6000 137.44354 1.54289 0.27344 

8000 244.29321 2.66143 0.35942 

10000 381.66046 4.08210 0.45021 

 

Table 4:  Projected Memory 

Matrix 

Size 

Regular 

(MB) 

Profile 

(in MB) 

Sparse 

(MB) 

20000 1525.2 14.7265   0.90 

30000 3430.5 32.1285    1.35 

50000 9526.5 87.0594 2.25 

100000 38097.0   341.7935 4.51 

500000 9.5224e+05 8417.7 22.58 

1000000 3.8089e+06 33608 45.17 

5000000 9.5220e+07 8.390e+05 225.85 

10000000 3.8088e+08 3.35e+06 451.70 

50000000 9.5220e+09 8.39e+07 2258.50 

100000000 3.8088e+10   3.35e+08 4517.00 

 

 

5.4 GPU in Coupled Problem Optimization 

We wish to resort to the genetic algorithm but it involves many function calls – that is many new 

meshes and a finite element solution for each. One way to reduce the computational load is to 

resort to parallel computation on shared memory machines [15, 17]. However, shared memory 

machines are expensive and usually come with 8 or 16 processors (because of technical difficulties in 

sharing the memory between processors) so that parallelization is limited.  

 

Recently using the graphics processing unit (GPU) on PCs has been proposed and implemented for 

finite element solution [51]. The GPUs are cheap and by default come with every PC. They allow 

multiple launches of a computational kernel on many GPU strings in parallel. 

 

However, what is not readily recognized – for example not mentioned in [46] – in the computational 

literature although stated in hardware manuals is that there is a GPU memory limit, presently at 4 

GB. For us the limit is real and has been recently 

encountered in finite element analysis [52, 53]. When we 

try to process several finite element solutions 

simultaneously in parallel we do hit the limit.  To test the 

limits we ran a problem with ever increasing size. The 

results are presented in Table 3. The limit was reached 

around a matrix size of 10,000 by 10,000.  

 

This limit is too small for us when several such matrix 

equations have to be processed simultaneously on 

different strings on a GPU. When sparse and profile 

storage schemes are employed [14] much bigger matrix 

sizes are possible – for example with the more efficient 

sparse storage we have processed matrices of size 

close to 10
8
x10

8
 before reaching 4 GB as in Table 4 

based on Table 3 and additional computations. Curve 

fitting was employed to project some of the 

information in Table 4 because only the sparse storage 

scheme goes up to 4 GB, necessitating the other 

storage schemes to be theoretical at matrix sizes 

which are not feasible within 4 GB. These are huge 

matrices.  

 

Nonetheless in optimization when we launch several 

strings in parallel even the efficient sparse storage 

scheme can be limiting and we must seek out new 

methods of handling this storage and workload. 

However, we note that the use of the sparse scheme of storage necessitates an iterative method 

without matrix decomposition; for matrix decomposition would require profile storage. 
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Kiss et al. [52] too have run into memory limits but at a smaller matrix size of 3,836,282 while solving 

a single matrix equation (as opposed to our 108x108). In their via-conference IEEE Transactions paper 

few details are given to permit following. Dziekonski et al. [53] as we have noted have bypassed the 

problem by using multiple GPU clusters which are not commonly available and it is technically 

difficult for most finite element analysts who would not be competent dealing with hardware 

arrangements on their own. So large coupled problems with two field systems to be solved, for all 

practical purposes, are beyond the capabilities of GPU memory. In fact we found that we quickly 

exceeded the memory limit and our program crashed. 

 

To overcome this, we used a method of the early 1980s when, working with the then new IBM PC 

286 machine, we had a memory limit of 612 kB which could not hold even a trivial matrix in memory. 

What we used to do [54] was employ the Jacobi methods of matrix solution (power systems 

engineers call it Gauss-Seidel) in a modified form. For example in solving (3), [P]{�}={Q}, the Gauss-

Seidel iterations commonly used by power engineers, is an improvement on the older Gauss 

iterations. In Gauss-Seidel in each iteration m+1 we use the latest available values of the unknowns 

�, using equation i of (3) to compute �� treating only �� as the unknown and all the other variables 

as known and given by their latest values in the iteration cycle: 

																																	��
�T	 � 1"�� UV"�W�W�T	 + V "�W�W�-

W�T	
�H	
W4	 X																																																										(13) 

with obvious modifications for i =1 and i = n. In this algorithm ��H	 must be computed before �� .	Here at iteration m+1, computing �� in the order i=1 to n, � is at values of iteration m+1 up to 

the (i-1)th component of {	� } and at the value of the previous iteration m for values after i. It is 

therefore necessarily a sequential algorithm. The older displaced Gauss iterations uses the old 

iteration’s value for computing all �� in iteration m+1. Therefore the computation of a particular ��value is independent of the computation of all other ��	values and therefore parallelizable:  

																																																					���T	 = 1"�� U$� −V"�W�W� − V "�W�W�-
W4�T	

�H	
W4	 X																																					 (14) 

This is inefficient in the context of sequential computations. But in this case of parallelization as 

several strings on the GPU, it is highly efficient. But the problem of memory needs to be addressed 

as each string must carry [P]. We may address this by not forming the matrix [P]. If [D] is the matrix 

[P] with all off diagonal elements eliminated, then Gauss’s iterations in this modified form gives,  

																																																														![#�M�T	 = �$ − !" − [#�M�																		 (15) 

Thus without forming [P], the operation of the right hand side of (15) can be effected by taking each 

finite element in turn, computing the local 3x3 Dirichlet matrix !"#\ and using that  because 

																																																																					!"# = ∑ !"#\				]^_�_-`a                                                                  (16) 
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Figure 18: Genetic Algorithm Shaping for Design 

Goal 

 
Figure 17: Speedup by Element-by-Element 

Iterations  

 

 

So as each !"#\ is formed in each string, the three values of ��� may be taken and subtracted as in 

the right hand side of (14). We tested this and the results are shown in Fig. 17. We were able to go 

up to matrix sizes 100,000x100,000, speed-up computation not being possible for higher sizes with 

normal storage. We project being able to go well-beyond to 100,000,000x100,000,000 without 

hitting memory limits.  

 

We then applied the same idea to the more efficient Incomplete Cholesky Preconditioned Conjugate 

gradients (ICCG) method [14] as laid out by Mahinthakumar and Hoole  [55] and Carey et al. [56] for 

shared memory systems with very similar speedup of about 130 – impossible on a shared memory 

system where with 16 processors speedup will be below 15, accounting for one processor for 

coordination of the other 15 and time for exchange of information between processors 

 

In this work, the Incomplete Cholesky Conjugate Gradients matrix solver was parallelized on the GPU 

and we observed a speed-up of 146.351 for the matrix  size 10,000x10,000 (Fig. 17). The shaped 

conductor is shown in Fig. 18. In the GA kernel, implemented here there was no internal 

parallelization – that is no parallelization of the matrix computation routines within the genetic 

algorithm such as of matrix computations. This could have been done for even greater gain. 

 

In some ways element-by-element work this is like what Kiss et al.[52] have done but only with ICCG. 

While they applied it to the solution of one matrix equation, we have solved an optimization 

problem on a GPU.  We have applied that to Gauss-Seidel with multiple matrix equation solutions for 

optimization. Whereas Dziekonski et al. [53] have encountered memory limits working with a single 

matrix equation of 3,836,282 degrees of freedom by their element by element method, we are able 

to go up to 100,000,000 degrees of freedom without hitting any limit. At least for what was 

compared, we can run 100/3.862 or about 26 parallel optimizations streams for problems as big as 

that, and numerous times more for smaller everyday problems.  

 

This number 26 is well above the number of parameters being usually optimized for designs so that 

such approaches are feasible for genetic algorithm parallelization on GPUs. 
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Conclusions 

This paper has reviewed finite element optimization in magnetics and its natural extension to 

nondestructive evaluation. Much good work has been done in the subject area of magnetics but 

because of the culture of the journals in which this work is published, attribution to previous works 

is poor and the emphasis is on results rather than repeatable methodology.  Perhaps with good but 

misguided intentions of fast dissemination of results, the subject area of finite element field 

computation in magnetics appears to have invited an insidious culture of quick and easy publication 

that is harmful to the subject. In the long term this will be seen as invidious by colleagues from other 

areas of science and engineering who compete for the same awards, recognitions, and promotions.  

 

The review of the work in finite element optimization in magnetics has identified the original papers 

as coming from French scientists. This paper has pointed out future directions of this subject in 

coupled field problem optimization with the genetic algorithm, the development of mesh generators 

based on parametric description and the use of GPUs to accelerate the process through modified 

algorithms. The mesh generator developed conforms to the requirements for smooth object 

functions so that future work can compare zeroth and first order methods in magnetics.  

 

The genetic algorithm used in optimization requires numerous function evaluations. In coupled 

problems this is doubled. So the use of GPUs is critical to parallelize the computations and speed 

them up. But that also doubles the memory requirements on GPUs which suffer severe memory 

limits. Others have used element-by-element processing for matrix solution processing to reduce 

memory loads. But they too have run up against these memory limits. To overcome these, the use of 

clusters of GPUs has been reported but this is not satisfactory because of their not being widely 

available. We have been able to solve much larger problems than reported on a single GPU using 

sparse storage, without recourse to clusters by element-by-element processing with Jacobi’s method 

which takes less memory than ICCG..  

 

Significant speed up of 146 has been shown by using element-by-element iterative approaches to 

finite element matrix solution. The memory savings achieved without multicore systems offers 

promise for running several strings of genetic algorithm kernels without hitting memory limits. It is 

also possible to parallelize each string into several parts parallelizing the matrix solution scheme in a 

kernel because of the availability of memory freed up by the element-by-element approach. Some 

preliminary work has been presented to establish the feasibility of these suggestions with 26 design 

variables. 

 

Future directions must engage more general mesh generators to model any shape of crack and three 

dimensional analysis of eddy current fields to locate and characterize interior defects. 

 

Disclaimer 

Reference herein to any specific commercial company, product, process, or service by trade name, 

trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 

recommendation, or favoring by the United States Government or the Dept. of the Army (DoA). The 

opinions of the authors expressed herein do not necessarily state or reflect those of the United 

States Government or the DoD, and shall not be used for advertising or product endorsement 

purposes. 
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